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Abstract

Infomax is considered, and it is shown that it can be performed locally using heb-
bian and anti-hebbian learning, and hence is a biologically feasible optimization rule.

Moreover, not only do its consequences align with experimental data, but are also
useful in artificial contexts.
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Notation

Throughout this text we use the following notation:

• X, Y denote random variables.

• P(X = x) denotes the probability of the outcome X = x.

• E(·) is the expectation operator.

• 〈·〉 denote trial or ensemble averages.

• P(z) is some probability distribution dependent on z.

• pX(x) or p(x) denotes the pdf or pmf of X.

• H(X) denotes the entropy of a variable X, while H(p) denotes the entropy of
a distribution p.

• DKL(p‖q) denotes the Kullback-Leibler divergence between distributions p and
q.

• I(X, Y ) denotes the mutual information between variables X and Y .

• s is used to denote a stimulus, s a stimulus vector.

• x denotes the input to a channel.

• y denotes the input to a channel.

• hi is used to denote the post-synaptic potential of a neuron indexed by i.

• f is used to denote a transfer function, fi when needing to distinguish between
neurons.

• W denotes the feedforward weight matrix, with wT
i the vector which is W ’s

ith row.

• M denotes the lateral weight matrix.

• α and η denote learning rates.

• ν the Greek letter is used to denote output noise of a channel or neural network.

• Φ is used to denote a neuron or a noisy channel.
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Chapter 1

Introduction

The layout of neurons in the brain is highly similar across different members of
the same species; however, being incredibly complex leads one to believe that the
genome cannot possibly determine this structure.

Consequently there must be something else which causes this structure. This phe-
nomenon is thus caused self-organization, whereby relatively simple units, through
some method, organize themselves into a complex whole. The neurons then, follow-
ing some inherent properties, must develop the way they do.

These inherent properties can be formalized by an optimization principle which the
neurons try to achieve, that is, an optimization principle guiding this development.
One such principle is infomax, the assertion that collections of neurons should try
to maximize the mutual information between their inputs and their outputs. This
optimization principle is studied here.

It will be shown that the implications, should infomax be the correct principle,
are consistent with observations of neural behaviour. Moreover, there is a learning
mechanism which implements infomax, and finally that this learning mechanism is
observed and biologically feasible.

We will conclude then that infomax is a viable candidate for explaining neuronal
self-organization.

In order to understand infomax, we will first need to address the theoretical back-
grounds of neural networks and information theory. Chapters 2 and 3 discuss the
essentials of these, respectively. Chapter 4 elaborates on infomax in context, and
gives some results. Chapter 5 considers principal component analysis (PCA), how it
can be performed using infomax, its predictions, and how these predictions are con-
sistent with observations in the brain. Chapter 6 does likewise, but for independent
component analysis (ICA), an extension of PCA.
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Chapter 2

Elements of Neural Networks

2.1 Structure of Neurons

In this section we consider the structure of neurons and neural networks insofar as
is needed for later parts. Artificial neural networks will be described for the purpose
of making analyses of neural networks tractable [For a more thorough exposition,
see 8].
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y2

...

ym

W11

W2n

Wmn

M12
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Figure 2.1: A typical 2 layer neural network with lateral connections.
Arrows denote direction of AP flow along axons. Not all synaptic efficacies Wij are

shown for readability.

Neurons are made up of several relevant parts:

• A cell body, enclosed in a membrane across which is a potential, called the
membrane potential or post-synaptic potential (PSP). If this potential rises
highly enough, the neuron fires an action potential (AP), or spike.

• Action potentials are charged pulses, which essentially embody the passing
of information between neurons. After a neuron fires an AP, there is a brief
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Maximization of Information Transfer in Neural Channels

period, called the absolute refractory period, wherein the neuron cannot fire
again.

• Dendrites which have receptor sites for neurotransmitters, which upon recep-
tion allow the opening and closing of ion channels. Ions flow through these
channels, increasing or decreasing the membrane potential.

• Axons, along which APs flow. At the end of the axon are vesicules storing
neurotransmitters, which are released into the synapse when the AP reaches
the axon’s end.

• Synapses, although not strictly part of neurons, are the small spaces between
the axon endings and dendrite receptor sites.

Local learning putatively occurs at the synapses, where receptor sites, their sensi-
tivities, and the amount of neurotransmitters released is altered. These properties
are lumped together into what are called synaptic efficacies, or synaptic weights. In
general, learning is performed by changing the properties of the neurons. They are
essentially plastic, in that their number and sensitivity of receptor sites, length of
axons, number of synapses, amount of neurotransmitter in the end of the axon, and
other features, can all change - and do change, in response to the environment.

There are many features of neurons which are not typically considered in high-
level models. These are simplifications made for computational purposes, or so
that analytical solutions may be found. An example is that the inputs to a neuron
are not necessarily additive - they may be subadditive or superadditive. That is,
the downstream effects of different receptor sites receiving neurotransmitters is not
necessarily the sum of the effects of each individual receptor site receiving neuro-
transmitters. However, additivity is a functional approximation. It is worth keeping
in mind that most attempts and dealing with learning in neurons only select a few
features of the neurons to address at any given time to allow tractability.

2.2 Firing Rates

Action potentials must convey their information through the timing of their firing:
although the APs vary in shape, duration, and amplitude, they are all treated as
identical instantaneous spikes.

Hence a sequence of n APs can be characterized by their firing times, ti, 1 ≤ i ≤ n,
where the sequence is observed over some finite interval of time, [0, T ], so that
∀i ti ∈ [0, T ].

We can define the neural response function as

ρ(t) =
n∑
i=1

δ(t− ti) (2.1)

where δ is the Dirac delta function.

Dean Rance Chapter 2 11



Maximization of Information Transfer in Neural Channels

Because the exact sequence of APs in response to a given stimulus varies from
trial to trial, neuronal responses are typically treated statistically. Sometimes they
are characterized by “firing rate”, which could have one of several interpretations:

• spike count rate is the number of APs that occur during a trial divided by
trial length:

r =
n

T
=

1

T

∫ T

0

ρ(t)dt (2.2)

• for a time dependent firing rate, we compute averages over short intervals of
length ∆t. However, because of the absolute refraction, for ∆t small enough
these averages will be 0 or 1. Hence the average is computed across several
trials. Denoting the trial average by 〈·〉, we get the trial averaged neural
response function 〈ρ(t)〉, and the time dependent firing rate is

r(t) =
1

∆t

∫ t+∆t

t

〈ρ(τ)〉dτ (2.3)

Observe that this value is always between 0 and 1. Hence, r(t)∆t approxi-
mates the probability of an AP occurring in the interval [t, t+ ∆)

• For well-behaved integrals, we can replace the trial averaged neural response
function with the time-dependent firing rate r(t):∫

h(τ)〈ρ(t− τ)〉dτ =

∫
h(τ)r(t− τ)dτ (2.4)

• Spike count firing rate can be averaged across trials

〈r〉 =
〈n〉
T

=
1

T

∫ T

0

〈ρ(τ)〉dτ =
1

T

∫ T

0

r(t)dt (2.5)

to get the average firing rate. These are the values we consider to be approxi-
mating, when using rate models.

If we put 〈r〉 = f(s) where s is a fixed stimulus, then f is called the neural response
tuning curve. It makes sense to compute this when the stimulus is held steady across
several trials.

2.3 Types of Codes

Rate codes have the information encoded in the rate at which the neuron fires.
While this allows for a robust method of information transfer, as the observed rate
would centralize around a mean, the intended rate (given zero-mean noise), a conse-
quence of this is that post-synaptic neurons cannot interpret the information until
they have observed enough action potentials to ascertain the mean. Observe that
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this value can be restricted to being between 0 and 1, by the discussion above. As
a consequence, spike codes tend to allow for faster transfer of information.

Spike codes incorporate the actual timing of the spikes. Because the precise timing
is subject to noise, this is often modeled by measuring whether the neuron fires
within small time bins. As a consequence of the absolute refractory period, for
small enough intervals, the neurons will fire at most once in any interval. Other
spike models include encoding the information in the times between consecutive
spikes, or synchrony across different neurons (which can sometimes interrupt one
another’s effects on a given post-synaptic neuron).

2.3.1 The Problem of Noise

Tuning curves allow us to predict average firing rates f(s) for a stimulus s, but
they do not describe deviation from the mean 〈r〉 = f(s) (hence the pre-synaptic
neuron has to fire for long enough for the post-synaptic neuron to estimate 〈r〉).
While the map f from stimulus to average firing rate may be deterministic, it is
“likely that single trial responses such as spike count rates” r “can only be modeled
probabilistically”[5].
Trial-to-trial deviation of r from 〈r〉 is considered noise; models accommodating for
this are thus called noise models.

If the standard deviation of the noise distribution is independent of f(s), the vari-
ability is called additive noise; otherwise multiplicative noise (for example) has a
standard deviation proportional to f(s) (such as the Poisson distribution).

2.4 Properties of the Visual System

For comparing predictions with actual observations, we discuss the basic structure
of visually responsive neurons [For a more thorough discussion, see 13, 5].

The process begins in the retina, converting light to AP sequences. The output
neurons of the retina form the optic nerve conducting these AP sequences to the
lateral geniculate nucleus (LGN) of the thalamus. From here, new signals are formed
and passed onto the primary visual cortex (V1).

Neurons in these three regions respond to light stimuli in restricted regions of the
visual field, called receptive fields (RFs). Within these receptive fields are regions
where greater illumination enhances neuronal firing, and regions where diminished
illumination enhances firing. These regions are arranged differently for different
neurons, effectively allowing different neurons to be sensitive to different inputs.
“Receptive fields”, the term, can also refer to this spatial arrangement.

Retinal cells and LGN cells respond best to circular spots of light surrounded by
darkness, or circular spots of darkness surrounded by light. These are their domi-
nant receptive fields. In V1,“many neurons respond best to elongated light or dark
bars, or boundaries between light and dark regions”[5]. We will see that these are the
principal components, and indeed the independent components, of natural images.

Dean Rance Chapter 2 13
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2.5 Artificial Neural Networks

We will consider artificial neural networks in the rate coding paradigm i.e. the
assumption that the outputs of the transfer functions are firing rates. The basic
architecture of these networks are as follows:

• There is a layer of input neurons, denoted x, simply called the inputs. The
input is a vector x = (x1, . . . , xN).

• There is a second layer of neurons, denoted y = (y1, . . . , yM). Each such
neuron has a weight vector wi and a bias w0,i used to compute the PSP
hi = xTwi +w0,i. These vectors are combined into a weight matrix W with
weight vectors transposed as its rows.

• The PSP of each neuron in the second layer can also be affected laterally by
other neurons, determined by a weight matrix M , so that for the ith neuron
hi ← xTwi +w0,i +

∑
j 6=iMijhj.

• Finally, each neuron in the second layer has a transfer function fi so that its
output is yi = fi(hi). Note that this can also be formalized to allow the transfer
function to be computed before the lateral updates. There is no necessarily
explicit order to these computations.

2.6 Locality and Hebbian Learning

Since neurons in the brain have only local information (no homunculus), for the pur-
pose of biological realism our algorithms and learning methods require this property.
Locality is where the learning update that a neuron performs uses only information
known to the neuron at the times - it cannot, for example, know the PSP of another
neuron. We consider two such related types of learning below.

2.6.1 Basic Hebbian Learning

Donald Hebb proposed an update rule of correlated behaviour of neurons leading
to the mantra “neurons that fire together, wire together”. Indeed the discovery of
long-term potentiation in the hippocampus has provided evidence supporting the
presence of this type of learning [13, For a discussion of Linsker’s early results in
deriving the receptive fields of LGN and V1 from simulations, see].

Hebbian learning is modeled as a learning rule whereby the learning updates de-
pends on the product of the strengths of simultaneous activation of the pre- and
post-synaptic neurons. Given an input x and a post-synaptic neuron yi with weight
vector wi and transfer function f so that yi = f(

∑
j xjwij) = f(xTwi), the learning

rule can be written as

∆wij(t) = αxjyi (2.6)

where wij(t) = ∆wij(t) + wij(t− 1) (2.7)

14 Chapter 2 Dean Rance
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where t denotes the timestep and wij(t) is the value of the weight at timestep t,
and α is a positive constant or independent variable called the learning rate. So,
assuming α is the same for each weight and letting f be the identity function, for
the full weight vector we get

∆wT
i (t) = α(wi(t− 1))T (xxT ) (2.8)

From this process we get

∆W (t) = α(W (t− 1))(xxT )→ α(W (t− 1))C (2.9)

where C is the autocorrelation matrix for the inputs x (defined as C = 〈xxT 〉).
Strictly speaking for analogue systems (and so biological systems) we can perform
the following transformation: setting α = α′ ×∆t where ∆t is the timestep, we can
write

∆W (t) = α′∆t(W (t−∆t))(xxT ) (2.10)

as
∆W (t)

∆t
= α′(W (t−∆t))(xxT ) (2.11)

to get
d

dt
W (t) = α′(W (t))C as ∆t→ 0 (2.12)

where differentiation is performed on each individual entry of the matrix. However,
since all simulations run are performed digitally, we will not consider this form
further.

2.6.2 Stable Hebbian Learning

It is straightforward to observe that this learning mechanism is unstable. Consider
for example the right hand side of the above equation.

αWC = α


wT

1 C
1 wT

1 C
2 . . . wT

1 C
n

wT
2 C

1 wT
2 C

2 . . . wT
2 C

n

...
...

...
...

wT
mC

1 wT
mC

2 . . . wT
mC

n

 (2.13)

where Ci denotes the ith column of the autocorrelation matrix C. Observe that,
since C is positive semi-definite, every entry of WC is greater than or equal to
zero. This means that at each learning step, wij grows for each i, j such that
(WC)ij = wT

i C
j 6= 0. This means that the basic hebbian learning mechanism has a

positive feedback loop, and can grow without bound. So, unless there is some way
of limiting the strengths of the synaptic efficacies, which is biologically plausible1,
the weights will increase without bound.

It is possible to renormalize the weights after each learning step so that the weight
vectors corresponding to individual neurons have norm 1. Although this may be
feasible and interesting, keeping all the weights on the surface of a sphere, and is

1If this were not to happen, it may induce an unpleasant phenomenon called excitotoxicity,
essentially destroying the neuron as well as neighbouring and downstream neurons.
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performed by some neural networks, it is nevertheless computationally expensive.
So other methods have been sought.

A popular option is to use a decay term, which simulates loss due to imperfect
memory. Ideally it would disallow the weights from having too great a magnitude,
while keeping them fairly constant for a given post-synaptic neuron.

Miller and MacKay [14] performed quite an exhaustive study of these decay terms,
and categorized them into two distinct types: multiplicative constraints and sub-
tractive constraints.

Multiplicative constraints are of the form

∆W (t) = (W (t− 1))C − γ(W (t− 1))(W (t− 1)) (2.14)

or ∆(wi(t))
T = (wi(t− 1))TC − γ(wi(t− 1))(wi(t− 1))T (2.15)

where γ is a function of W or wi. The subtrahend can be viewed as limiting the
growth of synaptic efficacies in proportion to the magnitude of the efficacies already
in place.

Subtractive constraints are of the form

∆W (t) = (W (t− 1))C − γ(W (t− 1))v (2.16)

or ∆(wi(t))
T = (wi(t− 1))TC − γ(wi(t− 1))v (2.17)

where v is a constant vector or a vector independent of W and wi..

2.6.3 Anti-Hebbian Learning

Where hebbian learning was originally proposed to use correlations, this uses anti-
correlations. This type of learning is typically instantiated laterally i.e. within the
same layer, and is modeled after interneurons in the brain which engage in inhibitory
transmission of signals. The learning rule can be written as follows:

∆Mij = −η〈yiyj〉 (2.18)

where η is once again some positive constant or variable.

The update rules are stable, since there is negative, rather than positive, feedback
in the algorithm. The updates become zero when the corresponding neurons have
uncorrelated behaviour.
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Chapter 3

Elements of Information Theory

In this chapter we review some fundamental concepts of information theory. Infor-
mation theory was developed to answer the questions of what the optimal rate of
transmitting information is across a (noisy) channel, what maximal compression of
data is possible, and how to achieve these. Neurons can be regarded as a special
case of noisy channels, and consequently information theory has been found useful
for analyzing the transmission of messages throughout neural networks. It is in
information theory that the infomax principle is founded.

3.1 Noisy Channels

Figure 3.1: Claude Shannon’s Noisy Channel Model
Taken From http://market2science.eu/wp-content/uploads/2015/02/

Shannon_communication_system.png

A noisy channel is composed of three parts: a transmission variable or message
X = X(ω) representing a message ω (X is called the codeword), a channel Φ which
adds noise or corrupts X. and a received variable Y = Φ(X). The received variable
is generated by a distribution dependent on the transmitted variable. The goal of
information theory is to find the optimal representations of the transmitted variable
so as to maximize the accuracy of inference of the message variable given the output

17
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Maximization of Information Transfer in Neural Channels

variable i.e. given Y we want to choose X, or the codewords, so as to minimize the
error in inferring X from Y . Naturally, one has to consider the distribution of the
variable X.

As an example, additive white Gaussian noise (AWGN) with strength T (measured
in variance) gives Y ∼ N (X,T ) or Y = X + ν where the noise ν ∼ N (0, T ). Here
additive noise is simply noise added to the intended codeword X.

There can also be multiplicative noise, where the distribution of the noise (more than
just the mean) is itself a function of the transmission variable i.e. N ∼ P(f(X))
where P is some probability distribution dependent on f(X). An example of this
may be where N is generated by a Poisson distribution with mean f(X). Intuitively
here one wants to choose f(X) so as to minimize it for frequent values of X, and
thus minimize the average effect of noise on the output.

Bayesian methods can then be used to infer P(X = x|Y = y) for some x ∈ {0, 1},
and y ∈ R.

3.1.1 Neural Networks as Noisy Channels

A neuron can be regarded as a noisy channel. Given a stimulus s, a neuron Φ com-
puts Φ(s). This is typically binary (Φ(s) ∈ {0, 1} i.e. the neuron either fires or does
not) or a real variable between zero and one i.e. Φ(s) ∈ [0, 1]. This is because of
the absolute refractory period which, at small enough timescales, causes the neuron
to be able to only fire once or not at all. Hence the firing rate at these scales is
between 0 and 1. Artificial neurons have no such hard constraints.

Considering a sequence of neurons Φ1,Φ2, . . . ,Φn feeding consecutively into one an-
other, and an input X, noise can cause the actual outputs of the neurons, y1, . . . , yn,
to not be the same as the computed values. For example, at the first layer we
may get y1 ∼ P(Φ1(X)), y2 ∼ P(Φ2(y1)) and so on, where |phi here computes the
desired noise-free output. Here P(·) denotes probability distributions which might
only depend on the argument for their mean i.e. additive noise.

That which is noise at the output of the one neuron, called output noise, is then in-
put noise for the next neuron. A neuron in this architecture may potentially handle
both noises. It can try infer the correct input, and adjust its inherent features to
maximize the accuracy of this inference, and it can adjust its outputs to make such
inference at later layers more accurate. This, or any combination of these, is called
learning.

3.2 Shannon Information and Entropy

Information theory, as originally developed by Claude Shannon [19], has been ap-
plied with considerable success to the study of neural networks, both biological and
artificial [6, 4]. Intuitively, the Shannon information (or just information) of the
outcome of a random variable measures the amount of information one gets from
such an outcome. Naturally then, a constant variable should give no information,
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since its outcome can be predicted.

Given a discrete random variable X over Ω ⊂ R with the probability mass function
pX , we can define the (Shannon) information of an output x as

h(x) : = log
1

P(X = x)
(3.1)

= log
1

pX(x)
(3.2)

= − log pX(x) (3.3)

where P(·) denotes the probability of an event occurring, implicitly with respect to
the appropriate probability measure denoted generically by P.

The entropy of X is defined as:

H(X) : = −
∑
x∈Ω

pX(x) log pX(x) (3.4)

=

〈
log

1

pX(x)

〉
pX

(3.5)

= E
(

log
1

pX(x)

)
(3.6)

where 〈·〉pX is the average with respect to the distribution induced by pX , and E(·)
is the expectation operator. Henceforth, except where needed for disambiguation,
we shall drop the subscript X for a probability mass or density function pX of a
variable X. Occasionally the distribution pX is used as the input for the entropy
operator, and other entropy-related operators i.e. H(pX) = H(X)

Observe that if p(x0) = 1 for some x0 ∈ Ω and zero everywhere else, then H(X) = 0
i.e. constant variables offer no uncertainty.

Here, we used the convention that 0 × log 0 = 0. The base of the logarithm deter-
mines the units: when computed with logarithm base 2, the units are bits. However,
it is often more convenient to use the natural logarithm, in which case the units are
nats. Base 10 logarithms have units of digits.

Notice that nowhere is the actual value of x used for the information of the outcome
X = x. A trivial consequence of this is translational invariance.

The entropy of a variable is also the average length of a codeword representing
the variable (in binary, say, if log2 is used). It goes without saying that shortening
the length of the average codeword shortens the time taken to transmit codewords.

3.3 Joint and Conditional Entropies

Let X, Y be random variables over ΩX ,ΩY respectively. Let the joint probability
mass function be p(x, y) and the conditional probability of Y = y given X = x be

Dean Rance Chapter 3 19
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p(y|x). Then the joint entropy of X and Y is

H(X, Y ) : = −
∑
x∈ΩX

∑
y∈ΩY

p(x, y) log p(x, y) (3.7)

= E
(

1

p(x, y)

)
(3.8)

=

〈
log

1

p(x, y)

〉
p(x,y)

(3.9)

and the conditional entropy of Y given X is

H(Y |X) : =
∑
x∈ΩX

p(x)H(Y |X = x) (3.10)

= −
∑
x∈ΩX

p(x)
∑
y∈ΩY

p(y|x) log p(y|x) (3.11)

= −
∑
x∈ΩX

∑
y∈ΩY

p(x, y) log(y|x) (3.12)

(by the chain rule for probabilities) which is the uncertainty of Y averaged over all
concrete outcomes of X. These definitions can be extended to provide the entropy of
a random vector X = (X1, . . . , Xn) as the joint entropy of its components H(X) =
H(X1, . . . , Xn), which are all random variables in their own right.

3.4 Kullback-Leibler Divergence

An important concept is that of Kullback-Leibler divergence, also known as relative
entropy or cross-entropy. It is a measure of the “difference” between two distribu-
tions p and q given by

DKL(p‖q) :=
∑
x∈Ω

p(x) log
p(x)

q(x)
(3.13)

This is not a metric, as DKL(p‖q) 6= DKL(q‖p) in general. However, we do have

DKL(p‖q) ≥ 0 and DKL(p‖q) = 0 ⇐⇒ p = q (3.14)

This can be seen using Jensen’s inequality:

−DKL(p‖q) =
∑
x∈Ω

p(x) log
q(x)

p(x)

≤ log

(∑
x∈Ω

p(x)
q(x)

p(x)

)
= log 1 = 0

since log is a concave function.

20 Chapter 3 Dean Rance



Maximization of Information Transfer in Neural Channels

3.5 Mutual Information

Mutual information is used to measure statistical independence between variables
X, Y with associated distributions p(x), p(y). The mutual information can be char-
acterized as the Kullback-Liebler divergence between the joint distribution p(x, y)
and the factorized ones:

I(X, Y ) : = DKL(p(x, y)‖p(x)p(y)) (3.15)

=
∑
x∈ΩX

∑
y∈ΩY

p(x, y) log
p(x, y)

p(x)p(y)
(3.16)

This is clearly symmetric: I(X, Y ) = I(Y,X). We also have that I(X,X) = H(X)
and if X and Y are independent, then I(X, Y ) = 0. Thus mutual information is a
measure of the amount of information one variable conveys about another.

Hence, if X is the input, Y the output of a noisy channel, then I(X, Y ) is a measure
of the amount of information conveyed by the channel.

Some useful properties of mutual information are its non-negativity, which follows
from the non-negativity of Kullback-Leibler Divergence, and reformulations

I(X, Y ) = H(X)−H(X|Y ) (3.17)

= H(Y )−H(Y |X) (3.18)

= H(X) +H(Y )−H(X, Y ) (3.19)

which follow from the fact that the operand of the logarithm in the definition p(x,y)
p(x)p(y)

is the same as p(x|y)
p(x)

by the chain rule for probabilities.

From this we observe that I(X, Y ) ≤ min (H(Y ), H(X)).

3.6 Redundancy

If X = (X1, . . . , Xn) is a random vector, then the mutual information of its compo-
nents provides a measure of redundancy R(X) of the vector:

R(X) := I(X1, . . . , Xn) (3.20)

= DKL (p(x1, . . . , xn)‖p(x1) . . . p(xn)) (3.21)

=
∑

x1∈ΩX1

· · ·
∑

xn∈ΩXn

p(x1, . . . , xn) log
p(x1, . . . , xn)

p(x1) . . . p(xn)
(3.22)

This is minimized when the vector X is factorized.

3.7 Extension to Continuous Distribution

The definitions for discrete random variables can be generalized to continuous ran-
dom variables X with probability density functions pX . Since confusion is unlikely,

Dean Rance Chapter 3 21



Maximization of Information Transfer in Neural Channels

the same notation will be used throughout for continuous and discrete variables, as
well as with the corresponding information theoretic concepts. Below, however, for
clarity, we will let H̃(·) denote the entropy of a discrete random variable.

Consider a discrete random variable X assuming values xk = kδx where k ∈ Z
with associated probabilities p̂(xk). As long as ∞ > δx > 0, we have

H̃(X) = −
∞∑

k=−∞

p̂(xk) log p̂(xk),
∞∑

k=−∞

p̂(xk) = 1 (3.23)

For the continuous limit, we define the probability density pX(xk) = p̂(xk)/δx. Then

H̃(X) = −
∞∑

k=−∞

δxpX(xk) log pX(xk) + log(1/δx),
∞∑

k=−∞

δxpX(xk) = 1 (3.24)

Notice that, provided the following integrals exist, we get

lim
δx→0

∞∑
k=−∞

δxpX(xk) log pX(xk) =

∫
pX(xk) log pX(xk)dx (3.25)

and

lim
δx→0

∞∑
k=−∞

δxpX(xk) =

∫
pX(xk)dx = 1 (3.26)

However, limδx→0 log(1/δx) =∞. Because of this, we define the differential entropy
to be

H(X) := −
∫
pX(x) log pX(x)dx (3.27)

There is nothing particularly foreign about this concept. If we let n denote the
counting measure, and m the usual Lebesgue measure, then the probability mass
function of a discrete random variable outputting values in some set A ⊂ R can be
written as ∑

x∈A

pX(x) =

∫
A

pXdn (3.28)

while for a continuous random variable Y this would simply be∫
A

pY dm (3.29)

Similarly, we get

H(X) =

∫
Ω

pX log pXdn and H(Y ) =

∫
Ω

pY log pY dm (3.30)

22 Chapter 3 Dean Rance



Maximization of Information Transfer in Neural Channels

3.7.1 Uniform Distribution

First we compute the entropy of the uniform distribution: let q = 1
b−a be the uniform

distribution on an interval [a, b]. Then

H(p) = −
∫ b

a

p(x) log p(x)dx (3.31)

=

∫ b

a

1

b− a
log(b− a)dx (3.32)

=
1

b− a
× [x log(b− a)]ba (3.33)

= log(b− a) (3.34)

We get from the positivity of Kullback-Leibler divergence that, if p(x) and q(x) are
two pdfs on an interval [a, b], then

0 ≤
∫ b

a

p(x) log
p(x)

q(x)
dx =⇒ −

∫ b

a

p(x) log q(x)dx ≥ −
∫ b

a

p(x) log p(x)dx (3.35)

Now let p be any probability mass function on {x1, . . . , xn}, and let q(xi) = 1
n
∀i.

Then

−
n∑
i=1

p(x) log q(x) =
n∑
i=1

log n = log n (3.36)

which we see is the entropy of q. Hence H(p) ≤ H(q). The generalization to con-
tinuous distributions follows from the previous method of rewriting the probability
mass function p(x) to the probability density function p(x)δx. Hence, for a fixed
interval, we see that the uniform distribution has the maximum entropy.

3.7.2 Gaussian Distribution

Here we will compute the differential entropy of a Gaussian random variable X,
firstly for a single-valued Gaussian with mean µ and variance σ2. The pdf is

p(x) =
exp(−1

2
[x− µ]2/σ2)

σ
√

2π
(3.37)

The entropy is therefore

H(X) = −
∫
R

1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
log

exp
(
− (x−µ)2

2σ2

)
√

2πσ2

 dx

= −
∫
R

1√
2πσ2

exp

(
−(x− µ)2

2σ2

)(
−(x− µ)2

2σ2
− log

√
2πσ2

)
dx

= log
√

2πσ2

∫
R

1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
+

1

2σ2

∫
R

(x− µ)2

√
2πσ2

exp

(
−(x− µ)2

2σ2

)
= log

√
2πσ2 +

σ2

2σ2

=
1

2

(
log(2πσ2) + 1

)
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Similarly, for a variable X with multivariate Gaussian distribution of dimension n
with mean µ and covariance matrix Σ, and m the Lebesgue measure, we get

H(X) = −
∫
Rn

p(x|µ,Σ) log

(
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(2π|Σ|)n/2

)
dm(x)

= −
∫
Rn

p(x|µ,Σ)
(
−n

2
log (2π|Σ|)

)
dm(x)

−
∫
Rn

p(x|µ,Σ)

(
−1

2
(x− µ)TΣ−1(x− µ)

)
dm(x)

=
n

2
log (2π|Σ|) +

1

2

∫
Rn

p(x|µ,Σ)Tr
(
Σ−1(x− µ)(x− µ)T

)
dm(x)

=
n

2
log (2π|Σ|) + Tr

(
Σ−1 1

2

∫
Rn

p(x|µ,Σ)(x− µ)(x− µ)Tdm(x)

)
=
n

2
log (2π|Σ|) +

1

2
Tr
(
Σ−1Σ

)
=
n

2
(log (2π|Σ|) + 1)

Now, for a fixed variance σ2, let q(x) be a pdf with the Gaussian distribution, and let
p(x) be some arbitrary distribution with the same variance. Translational invariance
of entropy allows us to assume that they both have the same mean µ. Now consider
the Kullback-Leibler divergence of the two distributions:

0 ≤ DKL(p‖q) = −H(p)−
∫
R
p(x) log q(x)dx

= −H(p)−
∫
R
p(x) log

(
1√

2πσ2
exp

(
−(x− µ)2

2σ2

))
dx

= −H(p)−
∫
R
p(x) log

(
1√

2πσ2

)
dx− log e

∫
R
p(x)

(
−(x− µ)2

2σ2

)
dx

= −H(p) +
1

2
log(2πσ2) +

σ2

2σ2

= −H(p) +
1

2

(
log(2πσ2) + 1

)
= −H(p) +H(q)

where the definition of variance was used to get from the third line to the fourth.
Rearrangement gives H(p) ≤ H(q) and so, for a fixed variance, the Gaussian distri-
bution has the greatest entropy.

3.8 Histogram Equalization

Since maximizing information transfer in a channel can be equated with maximizing
the entropy of the output distribution, one finds that for a bounded transfer func-
tion setting the derivative of the transfer function of the channel equal to input’s
probability density function achieves optimal transfer of information, that is, the
transfer function is the cumulative density function of the input distribution. This
achieves a uniform output distribution over the range of the transfer function, which
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maximizes the entropy of the output variable. So every output occurs with equal
probability.

The intuition [9] is that if the sensitivities of the transfer function are too high for
regular inputs, then the outputs are frequently saturated (in our case, the firing rate
frequently is near 1. This is particularly bad since a Poisson model would predict
greater noise here than elsewhere). If the sensitivities are too low, then large parts of
the response range are underutilized because they correspond to unlikely inputs. So
the inputs should be coded so that the response levels are used with equal frequency.

An alternative intuition is, given a small amount of additive output noise, we want
to minimize the effect thereof. This is done by increasing the relative effect of noise
on infrequent inputs so that one can decrease the effect of noise on frequent inputs.

An example of what may be histogram equalization may be the attention we pay
to words: imagine, for arguments sake, that we paid more attention to words which
occurred less frequently. If while listening to someone, they used some exotic word,
we may pay more attention or be more aware of it than the usual syntactical words
of English such as “of” or “the”. Then, if the amount of attention paid could be
measured numerically, and we multiplied the frequency of a word occurring with
the attention paid to it, histogram equalization would have occurred if this product
were fairly uniform.

Figure 3.2: Gaussian Histogram Equalization Over Finite Interval
Taken from http://sapachan.blogspot.co.za/2010/04/

learning-opencv-histogram-equalization.html
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]
(a) Before Histogram Equalization.

]
(b) After Histogram Equalization.

Figure 3.3: An Example Of Histogram Equalization
Taken from https://upload.wikimedia.org/wikipedia/commons/0/08/

Unequalized_Hawkes_Bay_NZ.jpg and https://upload.wikimedia.org/

wikipedia/commons/0/08/Eequalized_Hawkes_Bay_NZ.jpg respectively.
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Chapter 4

Infomax

In this section we outline discuss what infomax is, and the purpose it serves. In the
next sections how it generalizes to perform PCA and ICA.

Nadal and Parga [17] point out that a systematic approach had been developed
for analyzing sensory coding:

1. Decide on a task that may possible be fulfilled by the particular sensory system

2. Define an objective function that characterizes the performance of this system

3. Compute the optimal performance that could be obtained

4. Compare this performance with experimental data

It is assumed that sensory inputs are represented, or “encoded”, by the neurons for
efficient further processing. Hence some criteria are suggested are based on infor-
mation theory.

Two such related criteria are redundancy reduction [1] and infomax [12]. Redun-
dancy reduction is considered for comparison, as some interesting observations can
be made by this comparison.

The need for some optimization function arises from the idea of self-organization.
Given the complexity of the brain, yet the relative uniformity of its patterns across
instances, it is assumed that it is neither encoded by the genome nor a random
product of development. The neural structure must then organize with respect to
some organization principle.

4.1 Redundancy Reduction

Barlow’s proposal focuses on the readability of the presented representation, and
hence to optimize for compression of data neurons should code for features sta-
tistically independent from other features. The optimal code that achieves this
redundancy reduction is a factorial code. Deviation from a factorial code would
then be penalized.
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4.2 Infomax

Infomax is the principle that neurons should maximize the mutual information be-
tween the input and the output (sensory data and neural representation, respec-
tively). While primarily a mechanism to describe handling of neuronal noise (indeed
it is not well-defined in the absence of noise, as the differential entropy diverges!),
it nevertheless turns out to, in the near absence of noise, perform other tasks well.

4.3 Results on Infomax

For feedforward networks, with non-linear transfer functions, Nadal and Parga [16]
showed, in the low noise limit (so that the problem is well-defined), that infomax,
when performed over both the synaptic efficacies and the choice of transfer func-
tions, leads to a factorial code i.e. redundancy reduction.

As it turns out, mutual information will be maximum if

1. synaptic efficacies are such that PSPs are statistically independent

2. transfer functions for each cell are chosen according to histogram equalization

In fact, the transfer functions, when non-linear, allow the PSPs to pick up on higher
order moments and perform more than simply decorrelation. This result is related
to Blind Source Separation (BSS) (See chapter 6). That is, infomax can be used as
a cost function for performing BSS [2].

Although only the rate-coding paradigm is within scope, it is worth noting that for
feedforward networks with stochastic outputs, Nadal, Brunel and Parga [15] further
showed the factorization result “remains valid in the limit of vanishing noise” when-
ever it is the distribution of the output, and not the output itself, which depends on
a deterministic function of the input. Hence the result generalizes to spiking neurons.

So it turns out then that infomax also, where possible, enhances both the read-
ability of the code and improves the transfer rate by minimizing redundancy. Ulti-
mately, it is a hopeful candidate for explaining self-organization. The next result is
an important one, as it characterizes what the non-linearities do in these non-linear
networks.

4.4 Histogram Equalisation in Neurons

Laughlin [9] computed and verified the optimal function for transferring information
for a single neuron, a large monopolar cell having a single input and a single output,
in the blowfly’s visual system. He computed that, to optimize information transfer,
histogram equalization should be performed. This well-matched the experimental
data which, as far as the approach mentioned before is concerned, is the optimal out-
come. This experiment, although performed before infomax was proposed, verifies
infomax in this special case.
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Chapter 5

Extension to Principle Component
Analysis

5.1 Principle Component Analysis

In this section we discuss the problem of principal component analysis (PCA). We
will see that a hebbian learning implementation can be used to perform PCA and
derive biologically relevant results. While there are many such implementations,
we need only consider one for the thesis of this text. Moreover, infomax in some
cases reduces to preforming PCA, including the discussed biologically relevant case.
Ultimately, an understanding of PCA will also aid in the analysis of ICA as a con-
sequence of infomax.

As it turns out, under the assumption of Gaussian distributed inputs, a neural
network performing PCA maximizes the information transfer. In fact, derivation of
the visual receptive fields, both in the LGN and V1, can be realized by preforming
PCA on Gaussian white noise inputs. Linsker originally performed this derivation
using Linsker networks (2-dimensional layers of neurons receiving inputs from neu-
rons selected by a Gaussian distribution from neurons in the layer above, with mean
directly above the neuron) and hebbian learning, and he equated it to the problem
of PCA.

In principal component analysis, one is given observations from a mixture of distri-
butions (or a multivariate distribution) and the goal is to find the principal compo-
nents, i.e. the directions in which the data has most variance, and represent the data
with respect to these components. This typically allows for effective compression
of data, which in the case of a neural network, may allow for increased information
transfer rate. As it turns out, these principal components are in fact the eigenvec-
tors of the covariance matrix, or the correlation matrix if the results are to be found
with respect to maximal correlation as opposed to maximal covariance.

We show that under Gaussian input distributions, infomax equates to perform-
ing PCA. Moreover, a linear neural network can perform PCA with hebbian and
anti-hebbian learning and only local information. This can be done, for example,
by having the hebbian learning finds the principal subspace, and asymmetric anti-
hebbian learning finds a representation of this subspace with respect to the principal
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components.

5.2 Why PCA?

Where possible, infomax “reduces” to performing ICA (see next chapter). This
however is not always possible. One of the prominent instances is in the context of
a multivariate Gaussian input.

Given that infomax is still defined in these circumstances, we need to consider
what is actually achieved. A linear neural network disallows picking up higher order
moments, and so performs PCA, achieving infomax on Gaussian input distributions.

Interestingly, infomax was originally equated with PCA, probably due to the fact
that infomax appeared in literature before ICA! This may have set research back a
few years, but allowed for the derivation of some interesting results.

Note that in general, a linear neural network cannot achieve maximum informa-
tion transfer.

5.3 Hebbian PCA

x1

x2

...

xN

y1

y2

. . .

yM

W11

WMN

M21
MM1

Figure 5.1: The neural network of the hebbian/anti-hebbian algorithm.
Interneuron anti-hebbian connections denoted by matrix M , feedforward hebbian

connections by W . M ≤ N

In this section we present an algorithm put forth by Sanger [18] for performing
PCA using a neural network with hebbian and anti-hebbian learning mechanisms.

The overall structure of the algorithm is relatively simple. Every output neuron
yi receives the entire range of inputs x and has multiplicative weight decay. How-
ever, each output neuron is calculated in turn, with each consecutive one receiving
anti-hebbian responses from all previous output neurons. The result is that the
first neuron learns the direction in which the data correlates the most, but is scaled
quadratically so as to not have its overall weight deviate much from 1. The second
neuron then finds the direction of maximal correlation of inputs while simultaneously
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decorrelating itself from the first neuron, achieving ultimately complete decorrelation
from the first neuron but maximal input correlation direction, hence the direction
of the second PC. The third neuron does the same, but decorrelates itself from both
previous neurons, and so forth. Provided the number of output neurons M is less
or equal to the number of input neurons N , this algorithm finds the M principal
components.

Sanger [18] developed an algorithm, the Generalized Hebbian Algorithm (GHA),
which performs PCA. At the end, each output is the response to a single eigenvec-
tor of the correlation matrix, and the outputs are ordered by decreasing eigenvalues.

Let x be the inputs to a single layer linear network (two layers, including the input
layer) with an M × N weight matrix W , and let the outputs be y = Wx, with
M ≤ N .

If the values of x are generated by a stationary white random vector stochastic
process, with correlation matrix C = 〈xxT 〉, then x and y are both time-varying,
and so will be W as a result of the adaptation algorithm.

GHA is given by

Wij(t+ 1) = Wij(t) + γ(t)

(
yi(t)xj(t)− y(t)

∑
k<i

Wki(t)yk(t)

)
(5.1)

or, in matrix form,

∆W (t) = γ(t)
(
y(t)xT (t)− LT

(
y(t)yT (t)

)
W (t)

)
(5.2)

where LT(·) sets all elements above the diagonal to zero, making the argument a
lower triangular matrix.

If γ(t) is such that limt→∞ γ(t) = 0 and
∑∞

t=0 γ(t) = ∞, then, Sanger proves,
for random weights assigned at time 0, then the algorithm will converge, and W
will converge to the matrix consisting of the first M eigenvectors of the correlation
matrix, ordered by decreasing eigenvalue, with probability 1.

5.4 Linear Infomax and PCA

For a Gaussian input distribution, the reason is simple: decorrelation is the same as
independence. Consequently, finding the independent components of the distribu-
tion equates to finding decorrelated directions of the distribution. Since nonlinear
scaling does not occur (a bounded non-linear transfer function will force all the
outputs to be between its bounds, potentially equalizing their histograms over this
range, effectively transforming the Gaussian input ellipsoid level sets into a uni-
formly distributed hypersphere) the directions that are least correlated are exactly
the eigenvectors of the correlation matrix, that is, the principal components.
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5.5 Biological Relevance

The difference between the PCs found by applying PCA to natural images, and
the receptive fields of the visual cortex, occur primarily in the minor components
[7]. This is likely because the PCs were found under no noise conditions, and so
the minor components differ from the redundant information encoded by the brain.
That is, if the brain finds the principal components which it can, limited by input
noise, and embodies them in visual fields, then the results of this mechanism is
consistent with what is observed.
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Chapter 6

Extension to Independent
Component Analysis

6.1 Independent Component Analysis

Below we will demonstrate that independent component analysis (ICA), a general-
ization of PCA, can also be performed with a neural network by including nonlinear
transfer functions. As it turns out, this can be done with only local information and
hebbian/anti-hebbian learning. Consequently, this is a biologically feasible mecha-
nism. The result is a higher order generalization of Laughlin’s observation with the
blowfly’s neuron.

We first show that this is what would be expected as an outcome if infomax were
implemented, and then that this outcome actually occurs.

Independent component analysis (ICA) is essentially a higher-order generalization
of PCA. Where PCA considers only the variance of the data, ICA considers higher
order moments. The assumption is that we have a linear mixture of potentially
independent sources. We wish to find a representation of this information using
maximally independent components.

The goal of independent component analysis is to find a representation of the data
of independent components i.e. not simply decorrelate the components of a ran-
dom vector but actually render them independent. As an intriguing observation,
the implicit assumption of Gaussianity for PCA (i.e. that the independent com-
ponents and the maximally variant orthogonal components are the same, or that
maximizing variance maximizes independence) reveals a problem for non-Gaussian
mixtures: the central limit theorem indicates that mixtures of distributions tend to
be more Gaussian than not, and so PCA, which looks to maximize independence
under the assumption of Gaussianity, actually tends to maximize the mixture rather
than invert it.

The classic application for ICA is the “cocktail party” problem, or blind source
separation. This entails reversing a linear mixture of independent sources. We have
N sources, and N distinct observations such that the mixture is invertible. A related
problem is blind deconvolution, whereby the effect of an unknown filter needs to be
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Figure 6.1: PCA, ICA comparison on Linear Mixture of Independent Variables.
Taken from http://gael-varoquaux.info/science/attachments/ica_pca/

ica_on_non_gaussian_data.png

reversed. These problems are typically used to test an ICA methodology, whereupon
the method discussed below was successful.

6.2 Performing ICA

Bell and Sejnowski [2] observed that the generalization of histogram equalization
(having the sloping part of the transfer function align with the peaks of the input
distribution) to multiple inputs and outputs leads to a system which reduces re-
dundancy between output units while maximizing information transfer. This is, in
effect, ICA.

We present here their neural network algorithm, with non-linear transfer functions,
for achieving exactly this. First let X be the input, Y the output of a 1 input 1 out-
put neural network. We wish to maximize I(Y,X) = H(Y )−H(Y |X). We assume
there is no known noise (which we may have wished to filter out), and the neural
network mapping Φ(X) = Y is deterministic, and H(Y |X) has its lowest possible
value, diverging to −∞. To avoid the complexities of this divergence, where others
have fixed an infinitismal noise for well-definedness, Bell and Sejnowski consider only
the gradients since then the reference terms in the differential entropies causing this
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divergence disappear.

If w is a parameter in the mapping Φ, then differentiating with respect to it gives

∂

∂w
I(Y,X) =

∂

∂w
H(Y ) (6.1)

since H(Y |X) does not depend on w. To see this, consider a system which avoids
divergence by having small output noise:

Y = Φ(X) + ν (6.2)

where Φ is an invertible transformation, ν the additive output noise. Then

H(Y |X) = H(ν) (6.3)

So maximizing the mutual information is equivalent to maximizing the output en-
tropy H(Y ), because ∂

∂w
H(ν) = 0.

Thus, for given input distributions and invertible differentiable deterministic Φ,
mutual information is maximized by maximizing output entropy H(Y ).

We seek here effectively an algorithm which achieves Laughlin’s observation of his-
togram equalization.

If Φ is strictly monotonically increasing, or decreasing, so as to have a unique in-
verse, then the output pdf pY (y) can be written with respect to the input pdf pX(x)
using the change of variables formula:

pY (x) = pX(y−1)×
∣∣∣∣∂x∂y

∣∣∣∣ =
pX(x)

|∂y/∂x|
(6.4)

Thus, the output entropy is given by

H(Y ) = −E(log pY (y)) (6.5)

= −
∫ ∞
−∞

pY (y) log pY (y)dy (6.6)

=

∫ ∞
−∞

pY (y) log

∣∣∣∣∂y∂x
∣∣∣∣ dy − ∫ ∞

−∞
pX(x)

∣∣∣∣∂x∂y
∣∣∣∣ log pX(x)dy (6.7)

where the subtrahend on the right of the final line, the entropy of X, can for sim-
plicity be considered unaffected by alterations of w in determining Φ(X) = Y . So to
maximize H(Y ), we need only consider the minuend, or first term, when changing
w, which is the average log of how the input affects the output.

This can be done by using a sample of x’s to approximate pX(x), and then using an
online stochastic gradient ascent rule:

∆w ∝ ∂H

∂w

=
∂

∂w

(
log

∣∣∣∣∂y∂x
∣∣∣∣)

=

(
∂y

∂x

)−1
∂

∂w

(
∂y

∂x

)
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or simply

∆w = α

(
∂y

∂x

)−1
∂

∂w

(
∂y

∂x

)
(6.8)

for some learning rate α.

For illustrative purposes we can use their example of the logistic transfer function,
y = 1

1+e−h , h = wx + w0 where w0 is a bias term, and w a weight. Computing
their derivatives, we get

∂y

∂x
= wy(1− y) (6.9)

∂

∂w

(
∂y

∂x

)
= y(1− y)(1 + wx(1− 2y)) (6.10)

Letting the first equation be the divisor, the second the dividend, we get

∆w ∝ 1

w
+ x(1− 2y) =

1

w
+ x

(
1− 2

1 + e−wx−w0

)
(6.11)

The same process with w0 gives

∆w0 ∝ 1− 2y (6.12)

Observe that the ∆w rule is anti-hebbian (subtracting the product of x and a func-
tion of y so that the input is being decorrelated with the output) with an anti-decay
term 1

w
. The anti-hebbian term keeps y away from saturating values at 0 and 1

(as would be the case if the weights succumbed to a positive feedback loop and
diverged, letting h→ ±∞), but the anti-hebbian rule alone would make the weight
tend to 0 which would send h to 1

2
, so the anti-decay term 1

w
keeps y away from 0 by

growing significantly when w moves too close to 0. This balance of terms produces
a distribution near uniform over the interval (0, 1), in effect performing histogram
equalization.

Now we consider an N → N network with input x, weight matrix W , bias w0,
and output y. Then, similarly to before,

pY (y) =
pX(x)

|J |
(6.13)

where |J | is the absolute value of the Jacobian of the transformation from x to y.
Now, instead of maximizing log

∣∣ ∂y
∂x

∣∣, we maximize log |J |. Notice that this is the log
of the volume of the space into which the values of x are mapped. We are effectively
spreading the points uniformly.

Again using the logistic function y = 1
1+e−h , h = Wx + w0, similar rules can

be derived:

∆W ∝
(
W T

)−1
+ (1− 2y)xT (6.14)

∆w0 ∝ 1− 2y (6.15)
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where 1 is the vector of ones. The anti-hebbian term is now an outer product, and
the anti-decay term is now an anti-redundancy term (since the weight matrix tends
to being singular if its rows or columns align, that is, if its outputs align).

For an individual weight wij we get

∆wij ∝
cofwij
detW

+ xj(1− 2yi) (6.16)

where cofwij is the cofactor of wij. Because of the anti-redundancy term avoiding
convergence on a singular matrix, when the weight vectors for distinct outputs be-
come too similar, these updates cause then to diverge.

Linsker [10] observed that the computation above appears highly non-local, and

hence biologically infeasible. Computing
(
W T

)−1
appears to require a non-local

computation.

He offered the following local method of computing this value, which, in conjunction
with Bell and Sejnowski’s algorithm above, allows an entirely local implementation
for performing infomax.

Since we are computing the inverse transpose of feedforward weights, the transfer
functions are irrelevant. So consider the equation h = Wx. Let lateral connections
between each pair of output units i, j be described by a matrix M . These are used
recursively to compute an auxiliary vector

v(t) = Wx+Mv(t− 1), where v(0) = Wx

for t = 1, 2, . . . timesteps. For a fixed x, v(t) converges to v = Wx + Mv or
v = (I −M)−1Wx provided all eigenvalues of M have absolute value < 1 (letting
the inverse be defined).

This network is used to compute
(
W T

)−1
. Define q = 〈xxT 〉 and Q = 〈uuT 〉 =

WqW T , 〈·〉 denoting the ensemble average. Assuming the ensemble vector x spans
the input space, q is a positive definite matrix.

Assume the lateral weights M can be made to satisfy M = I − γQ (for a given
W ), γ chosen to ensure the eigenvalue condition. Linsker notes that we must then
have 0 < γ < 2/λ where λ is the largest eigenvalue of Q. Then Q−1 = γ(I −M)−1

and so I = γ(I −M)WqW T , giving(
W T

)−1
= γ(I −M)−1Wq = γ〈vxT 〉 (6.17)

The component W−1
ij = 〈vjxi〉 is computed using only local information.

A practical way of computing M is to let it evolve incrementally, according to

∆M = η(−γhhT + I −M) (6.18)

where η is a learning rate. This is an anti-hebbian learning rule (from the −ηγhhT
term) and it, too, is local, since

∆Mij = η(−γhihj + δij −Mij) (6.19)
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where δij is the Kronecker delta.

A catch in the implementation is that an input x needs to be held steady at the
inputs while the iterative computation takes place. Linsker “improved” on this [11]
by finding another solution, but in a rate-coding paradigm it is entirely feasible that
inputs remain present since they need to be in order for the post-synaptic neuron
to ascertain the rate.

The linear output uj =
∑

iWjixi is stored at each output unit j. Each pair of
outputs hj, hk is used to compute ∆Mjk for the lateral connection from k to j.
The outputs vj(t) are iteratively computed until asymptotic values vj are obtained.
Then finally for each feedforward connection i to j, xi and vj are used to compute(
W T

)−1

ji
.

6.3 Predictions of Non-Linear Infomax

We now consider the predictions of a neural network, using infomax as an opti-
mization criterion and not constrained by linearity. Effectively, this results in the
network reducing redundancy in its outputs, and thus finding a maximally indepen-
dent representation of its inputs. This, in effect, is independent component analysis.

6.4 Biological Relevance

Having shown that non-linear infomax can perform independent component analy-
sis using only biologically available properties of locality and hebbian/anti-hebbian
learning, it remains to show that the results thereof align with actual experimental
observations.

That is exactly what has been found in [3]. Here, Bell and Sejnowski performed
their algorithm on natural images and found that the ICA derived components
present properties of the receptive fields of simple cells in the primary visual cortex,
those of being localized and oriented bar and edge filters. One may wonder why both
ICA and PCA find similar results. Indeed, it is entirely conceivable that both mech-
anisms take place. Xi, Jiangtao, et al. found [20] from simulations that Bell and
Sejnowski’s algorithm, under some circumstances, would not work well unless the
data was preprocessed such as by PCA. This suggests that the mechanisms at play
are more complex and layered than hoped, but nevertheless working in conjunction
to achieve the result of maximizing information transfer.
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Conclusion

We have considered infomax as a possible optimization function to describe self-
organization and learning. Its predictions have been verified by experiments, and it
has been demonstrated that the process can be performed with local knowledge and
hebbian and anti-hebbian learning.

Hence, although many different optimization functions lead to similar outcomes
under various circumstances, we see that infomax is at the very least consistent.

Further research would then be to find different outcomes for different optimiza-
tion functions, so as to differentiate these different optimization functions based on
their predictions.

Furthermore, it must be noted that the models are not perfect: biological methods
for performing the computations have not been considered here, nor has the prop-
erty that excitatory synapses do not, as of yet observed, ever become inhibitory, or
vice versa.
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